Exam Lie Groups in Physics

Date

November 4, 2013

Room

V 5161.0289

Time Lecturer D. Boer

14:00 - 17:00

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the three exercises are given below
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Weighting

Result
$$=\frac{\sum points}{10} + 1$$

Exercise 1

Consider the group O(1,1) defined by 2×2 matrices O satisfying

$$O^T = gO^{-1}g^{-1} \quad \text{with} \quad g = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

- (a) Write down the general form of elements O in O(1,1) and show that such matrices form a non-compact non-Abelian group.
- (b) Specify the connected components of O(1,1) and show that they form cosets of the connected subgroup. Describe the corresponding factor group.
- (c) Show whether the defining representation is irreducible.
- (d) Write down the corresponding representation of the Lie algebra of O(1, 1) and show whether it is an irrep of the Lie algebra.

Exercise 2

- (a) Decompose the direct product of irreps of su(n) given by into irreps.
- (b) Count the dimensions of the irreps for su(2) and su(3) by using the hooks factors. Indicate complex conjugate irreps whenever appropriate.
- (c) Relate the decomposition for su(2) to the corresponding case of addition of angular momentum in Quantum Mechanics.

Exercise 3

Consider the four-dimensional representation of the generators of the Lorentz group:

$$(M^{\mu\nu})^{\alpha}_{\ \beta} = i(g^{\mu\alpha}g^{\nu}_{\ \beta} - g^{\nu\alpha}g^{\mu}_{\ \beta})$$

- (a) Write down the matrices for the following two cases: $\mu=0, \nu=1$ and $\mu=2, \nu=3.$
- (b) Exponentiate the matrix M^{01} obtained in part (a) and explain which Lorentz transformation it corresponds to.